网站首页 > 博客文章 正文
给你两个有序整数数组 nums1 和 nums2,请你将 nums2 合并到 nums1 中,使 nums1 成为一个有序数组。
初始化 nums1 和 nums2 的元素数量分别为 m 和 n 。你可以假设 nums1 的空间大小等于 m + n,这样它就有足够的空间保存来自 nums2 的元素。
示例 1:
输入:nums1 = [1,2,3,0,0,0], m = 3, nums2 = [2,5,6], n = 3
输出:[1,2,2,3,5,6]
示例 2:
输入:nums1 = [1], m = 1, nums2 = [], n = 0
输出:[1]
提示:
nums1.length == m + n
nums2.length == n
0 <= m, n <= 200
1 <= m + n <= 200
-109 <= nums1[i], nums2[i] <= 109
解决方法:
1、合并后排序
最朴素的解法就是将两个数组合并之后再排序。该算法只需要一行(Java是2行),时间复杂度较差,为O((n+m)log(n+m))。这是由于这种方法没有利用两个数组本身已经有序这一点。
class Solution {
public void merge(int[] nums1, int m, int[] nums2, int n) {
System.arraycopy(nums2, 0, nums1, m, n);
Arrays.sort(nums1);
}
}
复杂度分析
时间复杂度 : O((n+m)log(n+m))。
空间复杂度 :O(1)。
2、双指针 / 从前往后
一般而言,对于有序数组可以通过 双指针法 达到O(n+m)的时间复杂度。
最直接的算法实现是将指针p1 置为 nums1的开头, p2为 nums2的开头,在每一步将最小值放入输出数组中。
由于 nums1 是用于输出的数组,需要将nums1中的前m个元素放在其他地方,也就需要 O(m) 的空间复杂度。
class Solution {
public void merge(int[] nums1, int m, int[] nums2, int n) {
// Make a copy of nums1.
int [] nums1_copy = new int[m];
System.arraycopy(nums1, 0, nums1_copy, 0, m);
// Two get pointers for nums1_copy and nums2.
int p1 = 0;
int p2 = 0;
// Set pointer for nums1
int p = 0;
// Compare elements from nums1_copy and nums2
// and add the smallest one into nums1.
while ((p1 < m) && (p2 < n))
nums1[p++] = (nums1_copy[p1] < nums2[p2]) ? nums1_copy[p1++] : nums2[p2++];
// if there are still elements to add
if (p1 < m)
System.arraycopy(nums1_copy, p1, nums1, p1 + p2, m + n - p1 - p2);
if (p2 < n)
System.arraycopy(nums2, p2, nums1, p1 + p2, m + n - p1 - p2);
}
}
复杂度分析
时间复杂度 : O(n+m)。
空间复杂度 : O(m)。
3、双指针 / 从后往前
方法二已经取得了最优的时间复杂度O(n+m),但需要使用额外空间。这是由于在从头改变nums1的值时,需要把nums1中的元素存放在其他位置。
如果我们从结尾开始改写 nums1 的值又会如何呢?这里没有信息,因此不需要额外空间。
这里的指针 p 用于追踪添加元素的位置。
class Solution {
public void merge(int[] nums1, int m, int[] nums2, int n) {
// two get pointers for nums1 and nums2
int p1 = m - 1;
int p2 = n - 1;
// set pointer for nums1
int p = m + n - 1;
// while there are still elements to compare
while ((p1 >= 0) && (p2 >= 0))
// compare two elements from nums1 and nums2
// and add the largest one in nums1
nums1[p--] = (nums1[p1] < nums2[p2]) ? nums2[p2--] : nums1[p1--];
// add missing elements from nums2
System.arraycopy(nums2, 0, nums1, 0, p2 + 1);
}
}
复杂度分析
时间复杂度 : O(n+m)。
空间复杂度 : O(1)。
猜你喜欢
- 2024-10-27 ES6扩展运算符:详解与实践(es6扩展运算符深拷贝)
- 2024-10-27 Excel|文本花样连接,CONCATENATE、CONCAT、TEXTJOIN帮你完成
- 2024-10-27 Javascript中数组的方法(javascript 数组方法)
- 2024-10-27 LeetCode题集-4 - 寻找两个有序数组的中位数,六种解法,万字讲解
- 2024-10-27 JS中的Array对象——数组的合并、转换、迭代、排序、堆栈
- 2024-10-27 JavaScript 数组方法的介绍(javascript数组方法有哪些)
- 2024-10-27 vue数组更新后不渲染页面与$set的渊源
- 2024-10-27 vue-router的基本使用(vue- router)
- 2024-10-27 ???数组中的逆序对(归并排序思想)
- 2024-10-27 数据分析工具:Pandas架构分析(pandas数据分析模型)
你 发表评论:
欢迎- 最近发表
- 标签列表
-
- powershellfor (55)
- messagesource (56)
- aspose.pdf破解版 (56)
- promise.race (63)
- 2019cad序列号和密钥激活码 (62)
- window.performance (66)
- qt删除文件夹 (72)
- mysqlcaching_sha2_password (64)
- ubuntu升级gcc (58)
- nacos启动失败 (64)
- ssh-add (70)
- jwt漏洞 (58)
- macos14下载 (58)
- yarnnode (62)
- abstractqueuedsynchronizer (64)
- source~/.bashrc没有那个文件或目录 (65)
- springboot整合activiti工作流 (70)
- jmeter插件下载 (61)
- 抓包分析 (60)
- idea创建mavenweb项目 (65)
- vue回到顶部 (57)
- qcombobox样式表 (68)
- vue数组concat (56)
- tomcatundertow (58)
- pastemac (61)
本文暂时没有评论,来添加一个吧(●'◡'●)