前言
比如,当我们想将某个博客标记为“大神”时,博客系统却将这个单词粗暴的分成了如图所示的两个词“大”和“神”。显然,这并不符合用户的使用习惯。
这是 Elasticsearch 语言分析器上的限制,它并不能友好的处理所有语言,特别是中文。这种情况下,我们就需要额外的中文分词器来协助我们了。
分词(Analysis)
将文本切分为一系列单词的过程,比如 "美国留给伊拉克的是个烂摊子吗?"经过分词后的后果为:美国、伊拉克、烂摊子。
分词器(Analyzer)
elasticsearch中执行的分词的主体,官方把分词器分成三个层次:
- Character Filters:针对文档的原始文本进行处理,例如将印度语的阿拉伯数字"0 12345678 9"转换成拉丁语的阿拉伯数字"0123456789",或者去除HTML中的特殊标记符号,Character Filters可以有零或多个,安装顺序应用;PS:类似Servlet中的过滤器,或者拦截器,想象一下有一个过滤器链
- Tokenizer:核心,将文档的原始文本按照一定规则切分为单词,Tokenizer只能有一个;PS:Tokenizer 负责将文本拆分成单个token ,这里token就指的就是一个一个的单词。就是一段文本被分割成好几部分,相当于Java中的字符串的 split
- Token Filter:对经过Tokenizer处理过后的单词进行二次加工,比如转换为小写,Token Filter也可以有多个,按顺序依次调用。token过滤器接收token流,并且可能会添加、删除或更改tokens。不允许token过滤器更改每个token的位置或字符偏移量。一个分析器可能有0个或多个token过滤器,它们按顺序应用。
三者的调用顺序:Character Filters--->Tokenizer--->Token Filter
小结&回顾
- analyzer(分析器)是一个包,这个包由三部分组成,分别是:character filters (字符过滤器)、tokenizer(分词器)、token filters(token过滤器)
- 一个analyzer可以有0个或多个character filters
- 一个analyzer有且只能有一个tokenizer
- 一个analyzer可以有0个或多个token filters
- character filter 是做字符转换的,它接收的是文本字符流,输出也是字符流
- tokenizer 是做分词的,它接收字符流,输出token流(文本拆分后变成一个一个单词,这些单词叫token)
- token filter 是做token过滤的,它接收token流,输出也是token流
- 由此可见,整个analyzer要做的事情就是将文本拆分成单个单词,文本 ----> 字符 ----> token
Analyze API
es提供了endpoint为_analyze的语句来测试分词效果,你可以指定索引中的字段或者显式输入文本来测试分词效果
预定义的分词器
es自带的分词器如下,默认是standard,创建索引的mapping(类似于表结构)时候可指定
因为文档中的每个字段都会建立倒排索引,所以你也可以在创建索引的mapping时指定每个字段的分词器。
下面简单的测试一下Standard、Simple、whitespace这三个分词器分词效果,其余的就不测试了。
其余的分词器留给大家自己去测试,分词器的选择还是很重要的,按照你想要的切分方式切分文本得到的分词效果,既可以节省空间,又可以较好的解决搜索问题。尤其是中文,如何切分是个难点,比如文本"中国驻洛杉矶领事馆遭亚裔男子枪击 嫌犯已自首"如果经过默认的分词器standard analyzer切分的话,会得到"中、国、驻、洛、杉、矶、领、事、馆、遭、亚、裔、男、子、枪、击、嫌、犯、已、自、首",这显然不是我们想要的分词效果;再比如,"乒乓球拍卖完了",是切分为"乒乓球/拍卖/完了"还是切分为"乒乓球拍/卖完了"。
这里分享一个常用的中文分词器:ik_smart,它能较好的切分中文及英文文本,支持自定义词库,开源分词器 ik 的github:
https://github.com/medcl/elasticsearch-analysis-ik
安装iksmart分词器如下:
./bin/elasticsearch-plugin install https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v6.4.0/elasticsearch-analysis-ik-6.4.0.zip
注意:
替换6.4.0为自己安装的elasticsearch版本,安装好后的ik插件在/elasticsearch/plugins/目录下,接着就可以直接指定分词器为ik_smart了,ik里面提供了ik_smart、ik_max_word,大家可以通过如下测试下两种分词器分词效果:
分词使用时机
1.创建或更新文档时候,es会对相应的文档数据进行分词处理,比如你某个索引字段类型为text,那么插入一条文档时候就会对该字段进行分词处理,维护该字段文本内容的倒排索引,这种我们成为索引时分词;
2.查询时候,会对你的查询文本进行分词,比如你要查询"苹果手机",则会分词为"苹果、手机"两个单词;
我们可以在创建索引时候指定该字段的分词器:
也可以在查询时指定分词器:
实际使用时候我们需要明确文档中的某个字段是否要分词,如果没必要分词,请关闭,这能节省一定的空间及提高es的写入效率,同时实际生产中的具体的分词器选择要经过自己的实际测试。
1. 测试分析器
analyze API 是一个工具,可以帮助我们查看分析的过程。(PS:类似于执行计划)
curl -X POST "192.168.1.134:9200/_analyze" -H 'Content-Type: application/json' -d'
{
"analyzer": "whitespace",
"text": "The quick brown fox."
}
'
curl -X POST "192.168.1.134:9200/_analyze" -H 'Content-Type: application/json' -d'
{
"tokenizer": "standard",
"filter": [ "lowercase", "asciifolding" ],
"text": "Is this déja vu?"
}
'
输出:
{
"tokens":[
{
"token":"The",
"start_offset":0,
"end_offset":3,
"type":"word",
"position":0
},
{
"token":"quick",
"start_offset":4,
"end_offset":9,
"type":"word",
"position":1
},
{
"token":"brown",
"start_offset":10,
"end_offset":15,
"type":"word",
"position":2
},
{
"token":"fox.",
"start_offset":16,
"end_offset":20,
"type":"word",
"position":3
}
]
}
可以看到,对于每个term,记录了它的位置和偏移量
2. Analyzer
2.1. 配置内置的分析器
内置的分析器不用任何配置就可以直接使用。当然,默认配置是可以更改的。例如,standard分析器可以配置为支持停止字列表:
curl -X PUT "localhost:9200/my_index" -H 'Content-Type: application/json' -d'
{
"settings": {
"analysis": {
"analyzer": {
"std_english": {
"type": "standard",
"stopwords": "_english_"
}
}
}
},
"mappings": {
"_doc": {
"properties": {
"my_text": {
"type": "text",
"analyzer": "standard",
"fields": {
"english": {
"type": "text",
"analyzer": "std_english"
}
}
}
}
}
}
}
在这个例子中,我们基于standard分析器来定义了一个std_englisth分析器,同时配置为删除预定义的英语停止词列表。后面的mapping中,定义了my_text字段用standard,my_text.english用std_english分析器。因此,下面两个的分词结果会是这样的:
curl -X POST "localhost:9200/my_index/_analyze" -H 'Content-Type: application/json' -d'
{
"field": "my_text",
"text": "The old brown cow"
}
curl -X POST "localhost:9200/my_index/_analyze" -H 'Content-Type: application/json' -d'
{
"field": "my_text.english",
"text": "The old brown cow"
}
第一个由于用的standard分析器,因此分词的结果是:[ the, old, brown, cow ]
第二个用std_english分析的结果是:[ old, brown, cow ]
2.2. Standard Analyzer (默认)
如果没有特别指定的话,standard 是默认的分析器。它提供了基于语法的标记化(基于Unicode文本分割算法),适用于大多数语言。
例如:
curl -X POST "localhost:9200/_analyze" -H 'Content-Type: application/json' -d'
{
"analyzer": "standard",
"text": "The 2 QUICK Brown-Foxes jumped over the lazy dog\u0027s bone."
}
上面例子中,那段文本将会输出如下terms:
[ the, 2, quick, brown, foxes, jumped, over, the, lazy, dog's, bone ]
2.2.1. 配置
标准分析器接受下列参数:
- max_token_length : 最大token长度,默认255
- stopwords : 预定义的停止词列表,如_english_ 或 包含停止词列表的数组,默认是 _none_
- stopwords_path : 包含停止词的文件路径
2.2.2. 示例配置
curl -X PUT "localhost:9200/my_index" -H 'Content-Type: application/json' -d'
{
"settings": {
"analysis": {
"analyzer": {
"my_english_analyzer": {
"type": "standard",
"max_token_length": 5,
"stopwords": "_english_"
}
}
}
}
}
curl -X POST "localhost:9200/my_index/_analyze" -H 'Content-Type: application/json' -d'
{
"analyzer": "my_english_analyzer",
"text": "The 2 QUICK Brown-Foxes jumped over the lazy dog\u0027s bone."
}
以上输出下列terms:
[ 2, quick, brown, foxes, jumpe, d, over, lazy, dog's, bone ]
2.2.3. 定义
standard分析器由下列两部分组成:
Tokenizer
- Standard Tokenizer
Token Filters
- Standard Token Filter
- Lower Case Token Filter
- Stop Token Filter (默认被禁用)
你还可以自定义
curl -X PUT "localhost:9200/standard_example" -H 'Content-Type: application/json' -d'
{
"settings": {
"analysis": {
"analyzer": {
"rebuilt_standard": {
"tokenizer": "standard",
"filter": [
"lowercase"
]
}
}
}
}
}
2.3. Simple Analyzer
simple 分析器当它遇到只要不是字母的字符,就将文本解析成term,而且所有的term都是小写的。例如:
curl -X POST "localhost:9200/_analyze" -H 'Content-Type: application/json' -d'
{
"analyzer": "simple",
"text": "The 2 QUICK Brown-Foxes jumped over the lazy dog\u0027s bone."
}
输入结果如下:
[ the, quick, brown, foxes, jumped, over, the, lazy, dog, s, bone ]
2.3.1. 自定义
curl -X PUT "localhost:9200/simple_example" -H 'Content-Type: application/json' -d'
{
"settings": {
"analysis": {
"analyzer": {
"rebuilt_simple": {
"tokenizer": "lowercase",
"filter": [
]
}
}
}
}
}
2.4. Whitespace Analyzer
whitespace 分析器,当它遇到空白字符时,就将文本解析成terms
示例:
curl -X POST "localhost:9200/_analyze" -H 'Content-Type: application/json' -d'
{
"analyzer": "whitespace",
"text": "The 2 QUICK Brown-Foxes jumped over the lazy dog\u0027s bone."
}
'
输出结果如下:
[ The, 2, QUICK, Brown-Foxes, jumped, over, the, lazy, dog's, bone. ]
2.5. Stop Analyzer
stop 分析器 和 simple 分析器很像,唯一不同的是,stop 分析器增加了对删除停止词的支持。默认用的停止词是 _englisht_
(PS:意思是,假设有一句话“this is a apple”,并且假设“this” 和 “is”都是停止词,那么用simple的话输出会是[ this , is , a , apple ],而用stop输出的结果会是[ a , apple ],到这里就看出二者的区别了,stop 不会输出停止词,也就是说它不认为停止词是一个term)
(PS:所谓的停止词,可以理解为分隔符)
2.5.1. 示例输出
curl -X POST "localhost:9200/_analyze" -H 'Content-Type: application/json' -d'
{
"analyzer": "stop",
"text": "The 2 QUICK Brown-Foxes jumped over the lazy dog\u0027s bone."
}
'
输出
[ quick, brown, foxes, jumped, over, lazy, dog, s, bone ]
2.5.2. 配置
stop 接受以下参数:
- stopwords : 一个预定义的停止词列表(比如,_englisht_)或者是一个包含停止词的列表。默认是 _english_
- stopwords_path : 包含停止词的文件路径。这个路径是相对于Elasticsearch的config目录的一个路径
2.5.3. 示例配置
curl -X PUT "localhost:9200/my_index" -H 'Content-Type: application/json' -d'
{
"settings": {
"analysis": {
"analyzer": {
"my_stop_analyzer": {
"type": "stop",
"stopwords": ["the", "over"]
}
}
}
}
}
上面配置了一个stop分析器,它的停止词有两个:the 和 over
curl -X POST "localhost:9200/my_index/_analyze" -H 'Content-Type: application/json' -d'
{
"analyzer": "my_stop_analyzer",
"text": "The 2 QUICK Brown-Foxes jumped over the lazy dog\u0027s bone."
}
基于以上配置,这个请求输入会是这样的:
[ quick, brown, foxes, jumped, lazy, dog, s, bone ]
2.6. Pattern Analyzer
用Java正则表达式来将文本分割成terms,默认的正则表达式是\W+(非单词字符)
2.6.1. 示例输出
curl -X POST "localhost:9200/_analyze" -H 'Content-Type: application/json' -d'
{
"analyzer": "pattern",
"text": "The 2 QUICK Brown-Foxes jumped over the lazy dog\u0027s bone."
}
由于默认按照非单词字符分割,因此输出会是这样的:
[ the, 2, quick, brown, foxes, jumped, over, the, lazy, dog, s, bone ]
2.6.2. 配置
pattern 分析器接受如下参数:
- pattern : 一个Java正则表达式,默认 \W+
- flags : Java正则表达式flags。比如:CASE_INSENSITIVE 、COMMENTS
- lowercase : 是否将terms全部转成小写。默认true
- stopwords : 一个预定义的停止词列表,或者包含停止词的一个列表。默认是 _none_
- stopwords_path : 停止词文件路径
2.6.3. 示例配置
curl -X PUT "localhost:9200/my_index" -H 'Content-Type: application/json' -d'
{
"settings": {
"analysis": {
"analyzer": {
"my_email_analyzer": {
"type": "pattern",
"pattern": "\\W|_",
"lowercase": true
}
}
}
}
}
上面的例子中配置了按照非单词字符或者下划线分割,并且输出的term都是小写
curl -X POST "localhost:9200/my_index/_analyze" -H 'Content-Type: application/json' -d'
{
"analyzer": "my_email_analyzer",
"text": "John_Smith@foo-bar.com"
}
因此,基于以上配置,本例输出如下:
[ john, smith, foo, bar, com ]
2.7. Language Analyzers
支持不同语言环境下的文本分析。内置(预定义)的语言有:arabic, armenian, basque, bengali, brazilian, bulgarian, catalan, cjk, czech, danish, dutch, english, finnish, french, galician, german, greek, hindi, hungarian, indonesian, irish, italian, latvian, lithuanian, norwegian, persian, portuguese, romanian, russian, sorani, spanish, swedish, turkish, thai
2.8. 自定义Analyzer
前面也说过,一个分析器由三部分构成:
- zero or more character filters
- a tokenizer
- zero or more token filters
2.8.1. 实例配置
curl -X PUT "localhost:9200/my_index" -H 'Content-Type: application/json' -d'
{
"settings": {
"analysis": {
"analyzer": {
"my_custom_analyzer": {
"type": "custom",
"tokenizer": "standard",
"char_filter": [
"html_strip"
],
"filter": [
"lowercase",
"asciifolding"
]
}
}
}
}
}
3. Tokenizer
3.1. Standard Tokenizer
curl -X POST "localhost:9200/_analyze" -H 'Content-Type: application/json' -d'
{
"tokenizer": "standard",
"text": "The 2 QUICK Brown-Foxes jumped over the lazy dog\u0027s bone."
}
4. 中文分词器
4.1. smartCN
一个简单的中文或中英文混合文本的分词器
这个插件提供 smartcn analyzer 和 smartcn_tokenizer tokenizer,而且不需要配置
# 安装
bin/elasticsearch-plugin install analysis-smartcn
# 卸载
bin/elasticsearch-plugin remove analysis-smartcn
下面测试一下
可以看到,“今天天气真好”用smartcn分析器的结果是:
[ 今天 , 天气 , 真 , 好 ]
如果用standard分析器的话,结果会是:
[ 今 ,天 ,气 , 真 , 好 ]
4.2. IK分词器
到
https://github.com/medcl/elasticsearch-analysis-ik/releases?after=v6.6.0下载对应的版本,这里我下载6.4.0
然后,在Elasticsearch的plugins目录下建一个ik目录,将刚才下载的文件解压到该目录下
最后,重启Elasticsearch
接下来,还是用刚才那句话来测试一下
输出结果如下:
{
"tokens": [
{
"token": "今天天气",
"start_offset": 0,
"end_offset": 4,
"type": "CN_WORD",
"position": 0
},
{
"token": "今天",
"start_offset": 0,
"end_offset": 2,
"type": "CN_WORD",
"position": 1
},
{
"token": "天天",
"start_offset": 1,
"end_offset": 3,
"type": "CN_WORD",
"position": 2
},
{
"token": "天气",
"start_offset": 2,
"end_offset": 4,
"type": "CN_WORD",
"position": 3
},
{
"token": "真好",
"start_offset": 4,
"end_offset": 6,
"type": "CN_WORD",
"position": 4
}
]
}
显然比smartcn要更好一点
参考:
es官方文档
https://www.elastic.co/guide/en/elasticsearch/reference/current/index.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenfilters.html
https://github.com/medcl/elasticsearch-analysis-ik
本文暂时没有评论,来添加一个吧(●'◡'●)