本文分析PromQL基本组成,以及如何抽取和注入Labels,先上结论和方法:
如何抽取Labels
最新的Prometheus代码中已经给出了对应的函数
https://github.com/prometheus/prometheus/blob/cd18da36058aee37c237d765864a1a59f263bb96/promql/parser/ast.go#L319
func ExtractSelectors(expr Expr) [][]*labels.Matcher {
var selectors [][]*labels.Matcher
Inspect(expr, func(node Node, _ []Node) error {
vs, ok := node.(*VectorSelector)
if ok {
selectors = append(selectors, vs.LabelMatchers)
}
return nil
})
return selectors
}
如何注入Labels
没有提供,但可以根据上面的代码实现一个
func InjectSelectors(expr Expr, selectors []*labels.Matcher) error {
Inspect(expr, func(node Node, _ []Node) error {
vs, ok := node.(*VectorSelector)
if ok {
vs.LabelMatchers = append(vs.LabelMatchers, selectors...)
}
return nil
})
return nil
}
测试代码
import (
"testing"
"github.com/prometheus/prometheus/pkg/labels"
"github.com/prometheus/prometheus/promql/parser"
)
func genQuery(qs string, lset map[string]string) (string, error) {
if lset == nil {
return qs, nil
}
expr, err := parser.ParseExpr(string(qs))
if err != nil {
return "", err
}
var selectors []*labels.Matcher
for k, v := range lset {
selectors = append(selectors, labels.MustNewMatcher(labels.MatchEqual, k, v))
}
parser.Inspect(expr, func(node parser.Node, _ []parser.Node) error {
vs, ok := node.(*parser.VectorSelector)
if ok {
vs.LabelMatchers = append(vs.LabelMatchers, selectors...)
}
return nil
})
return expr.String(), nil
}
func TestGenQuery(t *testing.T) {
testExprs := []string{
"node_cpu_usage > 0",
"rate(node_cpu_total{node=\"n1\"}[1m]) > rate(node_cpu_total{node=\"n2\"}[1m])",
"container_cpu_limit_usage / avg_over_time(container_cpu_limit_usage[1d] offset 1d) > 1.01",
"container_cpu_limit_usage > 0 and container_memory_limit_usage > 0",
"container_cpu_limit_usage > 0.5 and container_memory_limit_usage > 0.5 or container_cpu_limit_usage > 0.8",
`sum(rate(apiserver_request_duration_seconds_sum{subresource!="log",verb!~"LIST|WATCH|WATCHLIST|DELETECOLLECTION|PROXY|CONNECT"}[5m])) without(instance, pod)
/
sum(rate(apiserver_request_duration_seconds_count{subresource!="log",verb!~"LIST|WATCH|WATCHLIST|DELETECOLLECTION|PROXY|CONNECT"}[5m])) without(instance, pod)`,
}
testLset := map[string]string{
"tcs_product": "cvm",
"tcs_type": "cvm",
}
for _, qs := range testExprs {
s, err := genQuery(qs, testLset)
if err != nil {
t.Fatal(err)
}
t.Log(s)
}
}
=== RUN TestGenQuery
xxx_test.go:52: node_cpu_usage{tcs_product="cvm",tcs_type="cvm"} > 0
xxx_test.go:52: rate(node_cpu_total{node="n1",tcs_product="cvm",tcs_type="cvm"}[1m]) > rate(node_cpu_total{node="n2",tcs_product="cvm",tcs_type="cvm"}[1m])
xxx_test.go:52: container_cpu_limit_usage{tcs_product="cvm",tcs_type="cvm"} / avg_over_time(container_cpu_limit_usage{tcs_product="cvm",tcs_type="cvm"}[1d] offset 1d) > 1.01
xxx_test.go:52: container_cpu_limit_usage{tcs_product="cvm",tcs_type="cvm"} > 0 and container_memory_limit_usage{tcs_product="cvm",tcs_type="cvm"} > 0
xxx_test.go:52: container_cpu_limit_usage{tcs_product="cvm",tcs_type="cvm"} > 0.5 and container_memory_limit_usage{tcs_product="cvm",tcs_type="cvm"} > 0.5 or container_cpu_limit_usage{tcs_product="cvm",tcs_type="cvm"} > 0.8
xxx_test.go:52: sum without(instance, pod) (rate(apiserver_request_duration_seconds_sum{subresource!="log",tcs_product="cvm",tcs_type="cvm",verb!~"LIST|WATCH|WATCHLIST|DELETECOLLECTION|PROXY|CONNECT"}[5m])) / sum without(instance, pod) (rate(apiserver_request_duration_seconds_count{subresource!="log",tcs_product="cvm",tcs_type="cvm",verb!~"LIST|WATCH|WATCHLIST|DELETECOLLECTION|PROXY|CONNECT"}[5m]))
--- PASS: TestGenQuery (0.00s)
PASS
ok xxx_test 0.024s
实现原理分析
PromQL基本接口和类型
PromQL抽象的接口类型,目前有11种Node或者说Expr接口类型,但基本类型为:NumberLiteral、StringLiteral、VectorSelector、MatrixSelector,前两个本身就没有任何标签,后两个有明确的结构体来保存标签,其中MatrixSelector嵌套了VectorSelector。其他类型只是这四种基本类型的组合,抽取和注入labels最根本是要对VectorSelector进行操作。
接口定义代码
https://github.com/prometheus/prometheus/blob/cd18da36058aee37c237d765864a1a59f263bb96/promql/parser/ast.go#L26
// Node is a generic interface for all nodes in an AST.
//
// Whenever numerous nodes are listed such as in a switch-case statement
// or a chain of function definitions (e.g. String(), PromQLExpr(), etc.) convention is
// to list them as follows:
//
// - Statements
// - statement types (alphabetical)
// - ...
// - Expressions
// - expression types (alphabetical)
// - ...
//
type Node interface {
// String representation of the node that returns the given node when parsed
// as part of a valid query.
String() string
// PositionRange returns the position of the AST Node in the query string.
PositionRange() PositionRange
}
// Statement is a generic interface for all statements.
type Statement interface {
Node
// PromQLStmt ensures that no other type accidentally implements the interface
// nolint:unused
PromQLStmt()
}
// EvalStmt holds an expression and information on the range it should
// be evaluated on.
type EvalStmt struct {
Expr Expr // Expression to be evaluated.
// The time boundaries for the evaluation. If Start equals End an instant
// is evaluated.
Start, End time.Time
// Time between two evaluated instants for the range [Start:End].
Interval time.Duration
}
func (*EvalStmt) PromQLStmt() {}
// Expr is a generic interface for all expression types.
type Expr interface {
Node
// Type returns the type the expression evaluates to. It does not perform
// in-depth checks as this is done at parsing-time.
Type() ValueType
// PromQLExpr ensures that no other types accidentally implement the interface.
PromQLExpr()
}
// Expressions is a list of expression nodes that implements Node.
type Expressions []Expr
类型代码
// AggregateExpr represents an aggregation operation on a Vector.
type AggregateExpr struct {
Op ItemType // The used aggregation operation.
Expr Expr // The Vector expression over which is aggregated.
Param Expr // Parameter used by some aggregators.
Grouping []string // The labels by which to group the Vector.
Without bool // Whether to drop the given labels rather than keep them.
PosRange PositionRange
}
// BinaryExpr represents a binary expression between two child expressions.
type BinaryExpr struct {
Op ItemType // The operation of the expression.
LHS, RHS Expr // The operands on the respective sides of the operator.
// The matching behavior for the operation if both operands are Vectors.
// If they are not this field is nil.
VectorMatching *VectorMatching
// If a comparison operator, return 0/1 rather than filtering.
ReturnBool bool
}
// Call represents a function call.
type Call struct {
Func *Function // The function that was called.
Args Expressions // Arguments used in the call.
PosRange PositionRange
}
// MatrixSelector represents a Matrix selection.
type MatrixSelector struct {
// It is safe to assume that this is an VectorSelector
// if the parser hasn't returned an error.
VectorSelector Expr
Range time.Duration
EndPos Pos
}
// SubqueryExpr represents a subquery.
type SubqueryExpr struct {
Expr Expr
Range time.Duration
// OriginalOffset is the actual offset that was set in the query.
// This never changes.
OriginalOffset time.Duration
// Offset is the offset used during the query execution
// which is calculated using the original offset, at modifier time,
// eval time, and subquery offsets in the AST tree.
Offset time.Duration
Timestamp *int64
StartOrEnd ItemType // Set when @ is used with start() or end()
Step time.Duration
EndPos Pos
}
// NumberLiteral represents a number.
type NumberLiteral struct {
Val float64
PosRange PositionRange
}
// ParenExpr wraps an expression so it cannot be disassembled as a consequence
// of operator precedence.
type ParenExpr struct {
Expr Expr
PosRange PositionRange
}
// StringLiteral represents a string.
type StringLiteral struct {
Val string
PosRange PositionRange
}
// UnaryExpr represents a unary operation on another expression.
// Currently unary operations are only supported for Scalars.
type UnaryExpr struct {
Op ItemType
Expr Expr
StartPos Pos
}
// StepInvariantExpr represents a query which evaluates to the same result
// irrespective of the evaluation time given the raw samples from TSDB remain unchanged.
// Currently this is only used for engine optimisations and the parser does not produce this.
type StepInvariantExpr struct {
Expr Expr
}
func (e *StepInvariantExpr) String() string { return e.Expr.String() }
func (e *StepInvariantExpr) PositionRange() PositionRange { return e.Expr.PositionRange() }
// VectorSelector represents a Vector selection.
type VectorSelector struct {
Name string
// OriginalOffset is the actual offset that was set in the query.
// This never changes.
OriginalOffset time.Duration
// Offset is the offset used during the query execution
// which is calculated using the original offset, at modifier time,
// eval time, and subquery offsets in the AST tree.
Offset time.Duration
Timestamp *int64
StartOrEnd ItemType // Set when @ is used with start() or end()
LabelMatchers []*labels.Matcher
// The unexpanded seriesSet populated at query preparation time.
UnexpandedSeriesSet storage.SeriesSet
Series []storage.Series
PosRange PositionRange
}
可以看到Expr这个interface是由接口Node和一个Type() ValueType函数组成,ValueType定义如下:
// Value is a generic interface for values resulting from a query evaluation.
type Value interface {
Type() ValueType
String() string
}
// ValueType describes a type of a value.
type ValueType string
// The valid value types.
const (
ValueTypeNone ValueType = "none"
ValueTypeVector ValueType = "vector"
ValueTypeScalar ValueType = "scalar"
ValueTypeMatrix ValueType = "matrix"
ValueTypeString ValueType = "string"
)
// DocumentedType returns the internal type to the equivalent
// user facing terminology as defined in the documentation.
func DocumentedType(t ValueType) string {
switch t {
case ValueTypeVector:
return "instant vector"
case ValueTypeMatrix:
return "range vector"
default:
return string(t)
}
}
从上面可以看出,vector=instant vector=VectorSelector,martix=range vector=MatrixSelector
同时回顾下Prometheus文档中关于四种类型的定义:
- Instant vector - a set of time series containing a single sample for each time series, all sharing the same timestamp
- Range vector - a set of time series containing a range of data points over time for each time series
- Scalar - a simple numeric floating point value
- String - a simple string value; currently unused
根据前面的分析,MatrixSelector嵌套了VectorSelector,那么只有VectorSelector具有Labels,可以抽取和修改,那首先需要解析PromQL语法并找到VectorSelector。继续查看Prometheus的代码,发现已经有对应的辅助函数可以简化我们的实现:
// Visitor allows visiting a Node and its child nodes. The Visit method is
// invoked for each node with the path leading to the node provided additionally.
// If the result visitor w is not nil and no error, Walk visits each of the children
// of node with the visitor w, followed by a call of w.Visit(nil, nil).
type Visitor interface {
Visit(node Node, path []Node) (w Visitor, err error)
}
// Walk traverses an AST in depth-first order: It starts by calling
// v.Visit(node, path); node must not be nil. If the visitor w returned by
// v.Visit(node, path) is not nil and the visitor returns no error, Walk is
// invoked recursively with visitor w for each of the non-nil children of node,
// followed by a call of w.Visit(nil), returning an error
// As the tree is descended the path of previous nodes is provided.
func Walk(v Visitor, node Node, path []Node) error {
var err error
if v, err = v.Visit(node, path); v == nil || err != nil {
return err
}
path = append(path, node)
for _, e := range Children(node) {
if err := Walk(v, e, path); err != nil {
return err
}
}
_, err = v.Visit(nil, nil)
return err
}
func ExtractSelectors(expr Expr) [][]*labels.Matcher {
var selectors [][]*labels.Matcher
Inspect(expr, func(node Node, _ []Node) error {
vs, ok := node.(*VectorSelector)
if ok {
selectors = append(selectors, vs.LabelMatchers)
}
return nil
})
return selectors
}
type inspector func(Node, []Node) error
func (f inspector) Visit(node Node, path []Node) (Visitor, error) {
if err := f(node, path); err != nil {
return nil, err
}
return f, nil
}
// Inspect traverses an AST in depth-first order: It starts by calling
// f(node, path); node must not be nil. If f returns a nil error, Inspect invokes f
// for all the non-nil children of node, recursively.
func Inspect(node Node, f inspector) {
//nolint: errcheck
Walk(inspector(f), node, nil)
}
// Children returns a list of all child nodes of a syntax tree node.
func Children(node Node) []Node {
// For some reasons these switches have significantly better performance than interfaces
switch n := node.(type) {
case *EvalStmt:
return []Node{n.Expr}
case Expressions:
// golang cannot convert slices of interfaces
ret := make([]Node, len(n))
for i, e := range n {
ret[i] = e
}
return ret
case *AggregateExpr:
// While this does not look nice, it should avoid unnecessary allocations
// caused by slice resizing
if n.Expr == nil && n.Param == nil {
return nil
} else if n.Expr == nil {
return []Node{n.Param}
} else if n.Param == nil {
return []Node{n.Expr}
} else {
return []Node{n.Expr, n.Param}
}
case *BinaryExpr:
return []Node{n.LHS, n.RHS}
case *Call:
// golang cannot convert slices of interfaces
ret := make([]Node, len(n.Args))
for i, e := range n.Args {
ret[i] = e
}
return ret
case *SubqueryExpr:
return []Node{n.Expr}
case *ParenExpr:
return []Node{n.Expr}
case *UnaryExpr:
return []Node{n.Expr}
case *MatrixSelector:
return []Node{n.VectorSelector}
case *StepInvariantExpr:
return []Node{n.Expr}
case *NumberLiteral, *StringLiteral, *VectorSelector:
// nothing to do
return []Node{}
default:
panic(errors.Errorf("promql.Children: unhandled node type %T", node))
}
}
其中Inspect函数可以接受一个带有接口Node的入参函数f,然后对语法树中的每个Node调用函数f进行对应处理,而且ExtractSelectors还提供了一个很好地例子,可以说很贴心了。
知其然,知其所以然,下面继续分析下内部是如何实现的。
首先,PromQL分析后得到的是一颗抽象语法树,其中树的每个节点都实现了Node接口,回顾下刚开始的接口Node接口定义:
// Node is a generic interface for all nodes in an AST.
//
// Whenever numerous nodes are listed such as in a switch-case statement
// or a chain of function definitions (e.g. String(), PromQLExpr(), etc.) convention is
// to list them as follows:
//
// - Statements
// - statement types (alphabetical)
// - ...
// - Expressions
// - expression types (alphabetical)
// - ...
//
type Node interface {
// String representation of the node that returns the given node when parsed
// as part of a valid query.
String() string
// PositionRange returns the position of the AST Node in the query string.
PositionRange() PositionRange
}
然后,对于语法树中的每个节点需要一个遍历的方法,Prometheus代码也提供了对应的函数Walk:
// Walk traverses an AST in depth-first order: It starts by calling
// v.Visit(node, path); node must not be nil. If the visitor w returned by
// v.Visit(node, path) is not nil and the visitor returns no error, Walk is
// invoked recursively with visitor w for each of the non-nil children of node,
// followed by a call of w.Visit(nil), returning an error
// As the tree is descended the path of previous nodes is provided.
func Walk(v Visitor, node Node, path []Node) error {
var err error
if v, err = v.Visit(node, path); v == nil || err != nil {
return err
}
path = append(path, node)
for _, e := range Children(node) {
if err := Walk(v, e, path); err != nil {
return err
}
}
_, err = v.Visit(nil, nil)
return err
}
Walk从根开始深度优先遍历所有节点,然后依次调用Visitor方法,Visitor是抽象出来的一个需要实现具体访问操作的接口。
正常情况需要我们自己定义一个struct,然后实现Visitor接口,不过像这种通用操作,在Golang中通常会使用一种叫函数类型转换的方式(参照http.HandleFunc)将该实现简化:
type inspector func(Node, []Node) error
func (f inspector) Visit(node Node, path []Node) (Visitor, error) {
if err := f(node, path); err != nil {
return nil, err
}
return f, nil
}
有了这个inspector类型,我们只需要实现一个函数签名为func(Node, []Node) error的函数,然后转换为inspector类型,自动就实现了Visit方法,也就可以满足Walk函数了,这里官方也给出了实现:
// Inspect traverses an AST in depth-first order: It starts by calling
// f(node, path); node must not be nil. If f returns a nil error, Inspect invokes f
// for all the non-nil children of node, recursively.
func Inspect(node Node, f inspector) {
//nolint: errcheck
Walk(inspector(f), node, nil)
}
OK,到这里,所有分析完毕,各位看官理解了吗?如有疑问,欢迎留言
本文暂时没有评论,来添加一个吧(●'◡'●)