专业的编程技术博客社区

网站首页 > 博客文章 正文

[深度学习] 深度学习优化器选择学习笔记

baijin 2024-09-12 11:08:48 博客文章 4 ℃ 0 评论


本文主要展示各类深度学习优化器Optimizer的效果。所有结果基于pytorch实现,参考github项目?pytorch-optimizer(仓库地址)???的结果。??pytorch-optimizer??基于pytorch实现了常用的optimizer,非常推荐使用并加星该仓库。

文章目录

  • 1 简介
  • 2 结果
  • A2GradExp(2018)
  • A2GradInc(2018)
  • A2GradUni(2018)
  • AccSGD(2019)
  • AdaBelief(2020)
  • AdaBound(2019)
  • AdaMod(2019)
  • Adafactor(2018)
  • AdamP(2020)
  • AggMo(2019)
  • Apollo(2020)
  • DiffGrad*(2019)
  • Lamb(2019)
  • Lookahead*(2019)
  • NovoGrad(2019)
  • PID(2018)
  • QHAdam(2019)
  • QHM(2019)
  • RAdam*(2019)
  • Ranger(2019)
  • RangerQH(2019)
  • RangerVA(2019)
  • SGDP(2020)
  • SGDW(2017)
  • SWATS(2017)
  • Shampoo(2018)
  • Yogi*(2018)
  • Adam
  • SGD
  • 3 评价
  • 4 参考

1 简介

??pytorch-optimizer??中所实现的optimizer及其文章主要如下所示。关于optimizer的优化研究非常多,但是不同任务,不同数据集所使用的optimizer效果都不一样,看看研究结果就行了。

optimizer

paper

A2GradExp

??https://arxiv.org/abs/1810.00553??

A2GradInc

??https://arxiv.org/abs/1810.00553??

A2GradUni

??https://arxiv.org/abs/1810.00553??

AccSGD

??https://arxiv.org/abs/1803.05591??

AdaBelief

??https://arxiv.org/abs/2010.07468??

AdaBound

??https://arxiv.org/abs/1902.09843??

AdaMod

??https://arxiv.org/abs/1910.12249??

Adafactor

??https://arxiv.org/abs/1804.04235??

AdamP

??https://arxiv.org/abs/2006.08217??

AggMo

??https://arxiv.org/abs/1804.00325??

Apollo

??https://arxiv.org/abs/2009.13586??

DiffGrad

??https://arxiv.org/abs/1909.11015??

Lamb

??https://arxiv.org/abs/1904.00962??

Lookahead

??https://arxiv.org/abs/1907.08610??

NovoGrad

??https://arxiv.org/abs/1905.11286??

PID

??https://www4.comp.polyu.edu.hk/~cslzhang/paper/CVPR18_PID.pdf??

QHAdam

??https://arxiv.org/abs/1810.06801??

QHM

??https://arxiv.org/abs/1810.06801??

RAdam

??https://arxiv.org/abs/1908.03265??

Ranger

??https://arxiv.org/abs/1908.00700v2??

RangerQH

??https://arxiv.org/abs/1908.00700v2??

RangerVA

??https://arxiv.org/abs/1908.00700v2??

SGDP

??https://arxiv.org/abs/2006.08217??

SGDW

??https://arxiv.org/abs/1608.03983??

SWATS

??https://arxiv.org/abs/1712.07628??

Shampoo

??https://arxiv.org/abs/1802.09568??

Yogi

??https://papers.nips.cc/paper/8186-adaptive-methods-for-nonconvex-optimization??

为了评估不同optimizer的效果,??pytorch-optimizer???使用可视化方法来评估optimizer。可视化帮助我们了解不同的算法如何处理简单的情况,例如:鞍点,局部极小值,最低值等,并可能为算法的内部工作提供有趣的见解。??pytorch-optimizer??选择了Rosenbrock和Rastrigin 函数来进行可视化。具体如下:

  1. Rosenbrock(也称为香蕉函数)是具有一个全局最小值(1.0,1.0)的非凸函数。整体最小值位于一个细长的,抛物线形的平坦山谷内。寻找山谷是微不足道的。但是,要收敛到全局最小值(1.0,1.0)是很困难的。优化算法可能会陷入局部最小值。
  1. Rastrigin函数是非凸函数,并且在(0.0,0.0)中具有一个全局最小值。由于此函数的搜索空间很大且局部最小值很大,因此找到该函数的最小值是一个相当困难的工作。

2 结果

下面分别显示不同年份算法在Rastrigin和Rosenbrock函数下的结果,结果显示为Rastrigin和Rosenbroc从上往下的投影图,其中绿色点表示最优点,结果坐标越接近绿色点表示optimizer效果越好。个人觉得效果较好的方法会在方法标题后加*。

A2GradExp(2018)

Paper: Optimal Adaptive and Accelerated Stochastic Gradient Descent (2018)

rastrigin

rosenbrock

A2GradInc(2018)

Paper: Optimal Adaptive and Accelerated Stochastic Gradient Descent (2018)

rastrigin

rosenbrock

A2GradUni(2018)

Paper: Optimal Adaptive and Accelerated Stochastic Gradient Descent (2018)

rastrigin

rosenbrock

AccSGD(2019)

Paper: On the insufficiency of existing momentum schemes for Stochastic Optimization (2019)

rastrigin

rosenbrock

AdaBelief(2020)

Paper: AdaBelief Optimizer, adapting stepsizes by the belief in observed gradients (2020)

rastrigin

rosenbrock

AdaBound(2019)

Paper: An Adaptive and Momental Bound Method for Stochastic Learning. (2019)

rastrigin

rosenbrock

AdaMod(2019)

Paper: An Adaptive and Momental Bound Method for Stochastic Learning. (2019)

rastrigin

rosenbrock

Adafactor(2018)

Paper: Adafactor: Adaptive Learning Rates with Sublinear Memory Cost. (2018)

rastrigin

rosenbrock

AdamP(2020)

Paper: Slowing Down the Weight Norm Increase in Momentum-based Optimizers. (2020)

rastrigin

rosenbrock

AggMo(2019)

Paper: Aggregated Momentum: Stability Through Passive Damping. (2019)

rastrigin

rosenbrock

Apollo(2020)

Paper: Apollo: An Adaptive Parameter-wise Diagonal Quasi-Newton Method for Nonconvex Stochastic Optimization. (2020)

rastrigin

rosenbrock

DiffGrad*(2019)

Paper: ??diffGrad: An Optimization Method for Convolutional Neural Networks. (2019)??

Reference Code: ??https://github.com/shivram1987/diffGrad??

rastrigin

rosenbrock

Lamb(2019)

Paper: Large Batch Optimization for Deep Learning: Training BERT in 76 minutes (2019)

rastrigin

rosenbrock

Lookahead*(2019)

Paper: ??Lookahead Optimizer: k steps forward, 1 step back (2019)??

Reference Code: ??https://github.com/alphadl/lookahead.pytorch??

非常需要注意的是Lookahead严格来说不算一种优化器,Lookahead需要一种其他优化器搭配工作,这里Lookahead搭配Yogi进行优化

rastrigin

rosenbrock

NovoGrad(2019)

Paper: Stochastic Gradient Methods with Layer-wise Adaptive Moments for Training of Deep Networks (2019)

rastrigin

rosenbrock

PID(2018)

Paper: A PID Controller Approach for Stochastic Optimization of Deep Networks (2018)

rastrigin

rosenbrock

QHAdam(2019)

Paper: Quasi-hyperbolic momentum and Adam for deep learning (2019)

rastrigin

rosenbrock

QHM(2019)

Paper: Quasi-hyperbolic momentum and Adam for deep learning (2019)

rastrigin

rosenbrock

RAdam*(2019)

Paper: ??On the Variance of the Adaptive Learning Rate and Beyond (2019)??

Reference Code: ??https://github.com/LiyuanLucasLiu/RAdam??

rastrigin

rosenbrock

Ranger(2019)

Paper: Calibrating the Adaptive Learning Rate to Improve Convergence of ADAM (2019)

rastrigin

rosenbrock

RangerQH(2019)

Paper: Calibrating the Adaptive Learning Rate to Improve Convergence of ADAM (2019)

rastrigin

rosenbrock

RangerVA(2019)

Paper: Calibrating the Adaptive Learning Rate to Improve Convergence of ADAM (2019)

rastrigin

rosenbrock

SGDP(2020)

Paper: Slowing Down the Weight Norm Increase in Momentum-based Optimizers. (2020)

rastrigin

rosenbrock

SGDW(2017)

Paper: SGDR: Stochastic Gradient Descent with Warm Restarts (2017)

rastrigin

rosenbrock

SWATS(2017)

Paper: Improving Generalization Performance by Switching from Adam to SGD (2017)

rastrigin

rosenbrock

Shampoo(2018)

Paper: Shampoo: Preconditioned Stochastic Tensor Optimization (2018)

rastrigin

rosenbrock

Yogi*(2018)

Paper: ??Adaptive Methods for Nonconvex Optimization (2018)??

Reference Code: ??https://github.com/4rtemi5/Yogi-Optimizer_Keras??

rastrigin

rosenbrock

Adam

pytorch自带

rastrigin

rosenbrock

SGD

pytorch自带

rastrigin

rosenbrock

3 评价

看了第2节的结果,DiffGrad,Lookahead,RAdam,Yogi的结果应该还算不错。但是这种可视化结果并不完全正确,一方面训练的epoch太少,另外一方面数据不同以及学习率不同,结果也会大大不同。所以选择合适的优化器在实际调参中还是要具体应用。比如在这个可视化结果中,SGD和Adam效果一般,但是实际上SGD和Adam是广泛验证的优化器,各个任务都能获得不错的结果。SGD是著名的大后期选手,Adam无脑调参最优算法。RAdam很不错,但是并没有那么强,具体RAdam的评价见??如何看待最新提出的Rectified Adam (RAdam)???。DiffGrad和Yogi某些任务不错,在某些任务可能效果更差,实际选择需要多次评估。Lookahead是Adam作者和Hinton联合推出的训练优化器,Lookahead可以配合多种优化器,好用是好用,可能没效果,但是一般都会有点提升,实际用Lookahead还是挺不错的。

结合可视化结果,实际下调参,先试试不同的学习率,然后再选择不同的优化器,如果不会调参,优化器个人推荐选择顺序如下:

  1. Adam
  2. Lookahead + (Adam or Yogi or RAdam)
  3. 带有动量的SGD
  4. RAdam,Yogi,DiffGrad

4 参考

  • ??pytorch-optimizer??
  • ??pytorch??
  • ??如何看待最新提出的Rectified Adam (RAdam)???

Tags:

本文暂时没有评论,来添加一个吧(●'◡'●)

欢迎 发表评论:

最近发表
标签列表