网站首页 > 博客文章 正文
文:辉小宝同学源:R语言和Python学堂
先来看下效果:
上图是小编在甘南合作的米拉日巴佛阁外面拍下的一张照片,采用风格迁移技术后的效果为:
一些其它效果图:
下面进入正题。
近年来,由深度学习所引领的人工智能(AI)技术浪潮,开始越来越广泛地应用到生活各个领域。这其中,人工智能与艺术的交叉碰撞,在相关技术领域和艺术领域引起了高度关注。就在上个月,由电脑生成的艺术品在佳士得(Christie’s)的拍卖价竟高达43.25万美元,证明人工智能不仅可以具有创造性,还可以创作出世界级的艺术品。
早些时候,有些人坚信艺术的创造力是人工智能无法替代的,艺术将是人类最后一片自留地!这不,没过多久,这片唯一的自留地也逐渐被人工智能所取代。
在这各种神奇的背后,最核心的就是基于深度学习的风格迁移(style transfer)技术。我将在这篇博客带领大家学习如何使用Python来快速实现图片的风格迁移。阅读完本博客后,相信你也能够创造出漂亮的艺术品。
1. 什么是图片的风格迁移?
所谓图片风格迁移,是指利用程序算法学习著名画作的风格,然后再把这种风格应用到另外一张图片上的技术。
举个例子,见上图。左边是我们的原始图片(也称内容图像):小编在苏州甪直古镇的一座小桥上拍下的一张照片。
中间是我们的风格图片:挪威表现派画家爱德华·蒙克的代表作《呐喊》(The Scream)。
右边是将爱德华·蒙克的《呐喊》的风格应用于原始图片后生成的风格化结果图。仔细观察,图片是如何保留了流水、房屋、房屋在水中的倒影,甚至远处树木的内容,但却运用了《呐喊》的风格,就好像爱德华·蒙克在我们的景色中运用了他高超的绘画技巧一样!
问题是,我们应该定义一个什么样的神经网络来执行图片的风格迁移?
这可能吗?
答案是:可以的。我将在下一节简单讨论如何基于神经网络来实现图片风格的迁移。
2. 基本原理
Gatys等人在2015年发表了第一篇基于深度学习的风格迁移算法文章,原文链接为https://arxiv.org/abs/1508.06576,随后文章收录于2016年的CVPR顶会。
有趣的是,他们提出了一种完全不需要新网络架构的风格迁移算法,其使用的网络构架是在前人的VGG19基础上稍加改造而成的,而且网络参数也使用预训练(通常在ImageNet上)网络的参数。我们来看下它的原理:
我们知道,卷积神经网络(CNN)具有很强的图像特征(feature/representation)提取能力,如上图所示。
对于内容图片,深层网络(d和e)提取的是高维特征,同时也丢弃了细节信息;浅层网络(a, b和c)提取的是低维特征,图片的细节大多都保留下来了。
对于风格图片,通过包含多层的特征相关性(Gram矩阵),可获得多尺度图像风格的重构,捕获其纹理信息。这样构建的网络可以忽略图像的具体细节,保留风格。
为了将内容图片和风格图片融合在一起(见下图),我们应该使风格化结果图(初始为一张白噪声图片)的特征同时与内容图片和风格图片的特征之间的距离最小化,最终获取我们所需的风格化结果图。
因此生成目标图片的损失函数可定义为:
其中α和β分别是内容图片和风格图片的特征所占的权重,通过最小化这个损失函数就可以获得我们想要的结果。来看个动态示意图:
值得注意的是,这里优化的参数不再是网络的权重ω和偏差b,而是初始输入的一张白噪声图片。
虽然上述方法可产生非常漂亮的风格迁移效果,但是速度很慢。
2016年,Johnson等人基于Gatys等人的工作,提出了一种速度可提高三个数量级的风格迁移算法。虽然算法的速度很快,但最大的缺点是不能像Gatys等人那样随意选择你的风格图片。针对每张风格图片,你都需要训练一个网络来重现这个风格。一旦网络模型训练好之后,你就可将它应用于你想要的任何内容图片了。
这篇博客我们将使用Johnson等人的方法,其算法实现和预训练模型可参考https://github.com/jcjohnson/fast-neural-style。
3. 基于OpenCV的快速实现
下面利用OpenCV来快速实现图片的风格迁移,我将其封装成一个叫 style_transfer()的函数,其使用说明可参考函数内部的注释。目前只有11个预训练模型可用,所有模型和相应风格图片都已上传至百度网盘。
## 载入所 需库 import cv2 import time def style_transfer(pathIn='', pathOut='', model='', width=None, jpg_quality=80): ''' pathIn: 原始图片的路径 pathOut: 风格化图片的保存路径 model: 预训练模型的路径 width: 设置风格化图片的宽度,默认为None, 即原始图片尺寸 jpg_quality: 0-100,设置输出图片的质量,默认80,越大图片质量越好 ''' ## 读入原始图片,调整图片至所需尺寸,然后获取图片的宽度和高度 img = cv2.imread(pathIn) (h, w) = img.shape[:2] if width is not None: img = cv2.resize(img, (width, round(width*h/w)), interpolation=cv2.INTER_CUBIC) (h, w) = img.shape[:2] ## 从本地加载预训练模型 print('加载预训练模型......') net = cv2.dnn.readNetFromTorch(model) ## 将图片构建成一个blob:设置图片尺寸,将各通道像素值减去平均值(比如ImageNet所有训练样本各通道统计平均值) ## 然后执行一次前馈网络计算,并输出计算所需的时间 blob = cv2.dnn.blobFromImage(img, 1.0, (w, h), (103.939, 116.779, 123.680), swapRB=False, crop=False) net.setInput(blob) start = time.time() output = net.forward() end = time.time() print("风格迁移花费:{:.2f}秒".format(end - start)) ## reshape输出结果, 将减去的平均值加回来,并交换各颜色通道 output = output.reshape((3, output.shape[2], output.shape[3])) output[0] += 103.939 output[1] += 116.779 output[2] += 123.680 output = output.transpose(1, 2, 0) ## 输出风格化后的图片 cv2.imwrite(pathOut, output, [int(cv2.IMWRITE_JPEG_QUALITY), jpg_quality])
来测试一下:
>>> models = glob.glob('./*/*/*.t7') >>> models ## 列出所有可用的预训练模型 ['.\\models\\eccv16\\composition_vii.t7', '.\\models\\eccv16\\la_muse.t7', '.\\models\\eccv16\\starry_night.t7', '.\\models\\eccv16\\the_wave.t7', '.\\models\\instance_norm\\candy.t7', '.\\models\\instance_norm\\feathers.t7', '.\\models\\instance_norm\\la_muse.t7', '.\\models\\instance_norm\\mosaic.t7', '.\\models\\instance_norm\\starry_night.t7', '.\\models\\instance_norm\\the_scream.t7', '.\\models\\instance_norm\\udnie.t7'] >>> pathIn = './img/img01.jpg' >>> pathOut = './result/result_img01.jpg' >>> model = './models/instance_norm/the_scream.t7' >>> style_transfer(pathIn, pathOut, model, width=500) 加载预训练模型...... 风格迁移花费:1.18秒 >>> pathIn = './img/img02.jpg' >>> pathOut = './result/result_img02.jpg' >>> model = './models/instance_norm/starry_night.t7' >>> style_transfer(pathIn, pathOut, model, width=500) 加载预训练模型...... 风格迁移花费:3.17秒 >>> pathIn = './img/img03.jpg' >>> pathOut = './result/result_img03.jpg' >>> model = './models/instance_norm/the_scream.t7' >>> style_transfer(pathIn, pathOut, model, width=500) 加载预训练模型...... 风格迁移花费:0.90秒 >>> pathIn = './img/img04.jpg' >>> pathOut = './result/result_img04.jpg' >>> model = './models/eccv16/the_wave.t7' >>> style_transfer(pathIn, pathOut, model, width=500) 加载预训练模型...... 风格迁移花费:2.68秒 >>> pathIn = './img/img05.jpg' >>> model = './models/instance_norm/mosaic.t7' >>> style_transfer(pathIn, pathOut, model, width=500) 加载预训练模型...... 风格迁移花费:1.23秒
从运行结果可知,在CPU上,一张图片的风格迁移所花的时间大概也就几秒。如果使用GPU,完全可以实时对视频/摄像头进行风格迁移处理。
4. 目前的相关进展
自Gatys等人第一次(2015年)实现基于深度学习的风格迁移以来,风格迁移技术仍一直在发展,如今在速度和质量上都有了很大提高。目前的一些进展可以通过下面的链接来了解:
- https://github.com/jcjohnson/fast-neural-style
- https://github.com/DmitryUlyanov/texture_nets
- https://github.com/luanfujun/deep-painterly-harmonization
- https://junyanz.github.io/CycleGAN/
他们的一些作品:
1. 风格迁移
2. 外来图片的融合
3. 图片季节的变换
4. 图片背景的虚化
5. 角色互换
小编我整理了一批2019的Python学习资料,可以免费送给每一位学习Python的朋友,想要的朋友可以关注+私信我:01,即可获取学习秘籍~
猜你喜欢
- 2024-10-08 还有这操作?我用Python这个库竟然实现了隔空操作
- 2024-10-08 使用Python实现增强现实(AR)(python opencv图像增强)
- 2024-10-08 Python 增强视频画质,就这么做(python视频补帧)
- 2024-10-08 如何在Python代码中可视化卷积特征
- 2024-10-08 python图像识别之图片相似度计算(图片相似度分析)
- 2024-10-08 「数据采集测试」Python+cv2实现循环播放照片
- 2024-10-08 SAM2分割模型微调指南(分割模型操作)
你 发表评论:
欢迎- 07-07Xiaomi Enters SUV Market with YU7 Launch, Targeting Tesla with Bold Pricing and High-Tech Features
- 07-07Black Sesame Maps Expansion Into Robotics With New Edge AI Strategy
- 07-07Wuhan's 'Black Tech' Powers China's Cross-Border Push with Niche Electronics and Scientific Firepower
- 07-07Maven 干货 全篇共:28232 字。预计阅读时间:110 分钟。建议收藏!
- 07-07IT运维必会的30个工具(it运维工具软件)
- 07-07开源项目有你需要的吗?(开源项目什么意思)
- 07-07自动化测试早就跑起来了,为什么测试管理还像在走路?
- 07-07Cursor 最强竞争对手来了,专治复杂大项目,免费一个月
- 最近发表
-
- Xiaomi Enters SUV Market with YU7 Launch, Targeting Tesla with Bold Pricing and High-Tech Features
- Black Sesame Maps Expansion Into Robotics With New Edge AI Strategy
- Wuhan's 'Black Tech' Powers China's Cross-Border Push with Niche Electronics and Scientific Firepower
- Maven 干货 全篇共:28232 字。预计阅读时间:110 分钟。建议收藏!
- IT运维必会的30个工具(it运维工具软件)
- 开源项目有你需要的吗?(开源项目什么意思)
- 自动化测试早就跑起来了,为什么测试管理还像在走路?
- Cursor 最强竞争对手来了,专治复杂大项目,免费一个月
- Cursor 太贵?这套「Cline+OpenRouter+Deepseek+Trae」组合拳更香
- 为什么没人真的用好RAG,坑都在哪里? 谈谈RAG技术架构的演进方向
- 标签列表
-
- ifneq (61)
- 字符串长度在线 (61)
- messagesource (56)
- aspose.pdf破解版 (56)
- promise.race (63)
- 2019cad序列号和密钥激活码 (62)
- window.performance (66)
- qt删除文件夹 (72)
- mysqlcaching_sha2_password (64)
- ubuntu升级gcc (58)
- nacos启动失败 (64)
- ssh-add (70)
- jwt漏洞 (58)
- macos14下载 (58)
- yarnnode (62)
- abstractqueuedsynchronizer (64)
- source~/.bashrc没有那个文件或目录 (65)
- springboot整合activiti工作流 (70)
- jmeter插件下载 (61)
- 抓包分析 (60)
- idea创建mavenweb项目 (65)
- vue回到顶部 (57)
- qcombobox样式表 (68)
- tomcatundertow (58)
- pastemac (61)
本文暂时没有评论,来添加一个吧(●'◡'●)